Table of Mcasurements.

Wasinngron, April 25, 1879.

ON THE SPECEES OF ASTEOSCOTUS OF THE EASTEISN UNETED sTATES.

Ly TAEEETON EII. EREAN.

The family Uranoscopide of Gill has two representatives on the east coast of the United States, Astroscopus y-gracum (U. \& V.) Gill, and A. anoplus (C. \& V.) Brevoort. The former was described from the Caribbean Sea, and is now for the first time recorded in onr waters. A. anoplus was founded upon young individuals sent by Professor LeConte, and the immaturity of the specimens has led to considerable confusion in the diagnoses of generi. Cuvier and Valenciennes supposed the species to be scaleless. Drs. Gill and Giinther both employed this as one of the characters separating it from Uranoscopus, the latter in 1860* assigning the U. anoplos of Cuvier and Valenciennes to his new genus,

[^0]Agmus, with the distinguishing characters of a naked body and the absence of a filament in the month. Dr. (iill, in 1861,* nsed the same characters in transferring the same species from Cranoscopus to Astroscopus of Brevoort, adding some particulars as to the mailing of the hear and the armature of the preoperculmm. The species, in fact, is covered with scales, which in the young are inconspicuons, but in the adult may be readily comnted. The genus Astroscopus, however, is well separated from Uirnoscopus, and may be this defined:

ASTROSCOPUS Brevoert.

Cramoscopus sp. CuV. \& Vile, Hist. Nat. Poiss., viii, 1831, p. 493.
Astroscopus Brevoort, Proc. Phila. Acad. Nat. Sci., Jan. 18i0, p. 20.-Gill, op. cit., $1 \sim 61$, 〕. 113.
Agния G0̈>tuer, Cat. Fish. Brit. Miss., ii, 1860, p. 229.
Lpselouphorus Gill, op, et loc. cit.
Head above with its crown covered with a bony plate, from the middle of the anterior margin of which arises a y-shaped apophysis, the limbs of which extend to the orbits. Postocular region covered only with skin.

Preoperculum with two blunt processes t generally radiating from the angle of its anterior limb, one of which is directed downwards and forwards. Humeral spine inconspicuous. Lower jaw entire beneath. Lips furuished with ummerons filaments. No spines before the rentrals. \ddagger No intralabial filament. Head and belly without seales; the rest of the borly covered with small seales. Two dorsal fins; the first composed of four short spines, the second abont equal to the anal.

1. Astroscopus y-græcum (Cuv. \& Val.) Gill.

Crunoscopus y-grackm Cuv. \& Val., Hist. Nat. Poiss., iii, 1829, p. 308.-GÜNther, Cat. Fish. Brit. Mus., ii, 1850, p. 229.
Astrocopms y-grectm Gill, Proc. Acal. Nat. Sci. Phila., xii, 1860, p. 21.
${ }_{4}{ }^{2}$ sselonphorus y-gracum Gill, op. cit., xiii, $1851, \mathrm{p} .113$.
There are now two specimens of this species in the National Musenm, one (No. 1s(14t) taken in the Saint John's River, Florida, by Prof. S. F. Baird, April 2, 1857; the other (No. 18029) collected in the Matanzas River Inlet, Florida, by Mr. Joseph C. Willetts, in Febrnary, 1877. In a collection of color-sketches of fishes made for Prof. Lonis A gassiz, and now lent by the Mnsemm of Comparative Zoölogy to the National Mnseum, are illustrations of A. y-grecum from Hampton Roads, Va., Charleston, S. C., and Pensacola, Fla.

Description.-The greatest lieight of the body (.26) equals twice the length of the operculum (.13). Its greatest width (.24) equals the height at the rentrals (.24), and the distance of the rentrals from the snont (.24). The least leight of the tail (.10) is contained 10 times in the total length, and equals the distance between the eyes (.10). The length of the caudal peduncle (.08) equals that of the last anal ray (.08), and is contained $12 \frac{1}{2}$ times in the total length.

[^1]The greatest length of the head (.37) slightly exceeds the distance of the spinons dorsal from the snout (.36). The length of the postocmar depression (.11) equals more than 3 times the length of the snont (.0312 ${ }_{2}$), and is contained about 9 times in the total length. The width of this depression $\left(.07 \frac{1}{2}\right)$ equals about $\frac{2}{3}$ of its length. The greatest wisth of the head (.28) equals 4 times the length of the second dorsal spine (.07). The jaws are shorter than in A. anoplus. The length of the uper (. $1 \tilde{v}_{2}^{1}$) equals half the length of the anal base (.31), and is contained 60_{2}^{2} times in the total length (less than 6 times in A. anoplus). The length of the mandible (.21) is contained 4_{5}^{4} times in the total length. The maxilla extends to a perpendicular, drawn at a distance behind the eye equal to the short diameter of the eye, and the mandible ends in the same vertical. The long diameter of the eye (.03) equals Lall the length of the last ray of the second dorsal (.06).

The distance of the spinous dorsal from the snont (.36) is a little less than the greatest length of the head (.37). The length of its base (.11) is contained 9 times in the total length, and equals the length of the postocular depression. The spines are all longer than in A. anoplus. The length of the first $\left(.07 \frac{1}{2}\right)$ is nearly $\frac{1}{2}$ the length of the upper jaw, and slightly exceeds that of the second (.07), which equals $\frac{1}{3}$ of the length of the mandible. The lastspine (.021 $)$ is $\frac{1}{3}$ as long as the first. The length of the base of the second dorsal (.30) is contained $3 \frac{1}{3}$ times in the total length, and equals 3 times the distance between the eyes. Its longest ray $\left(.19 . \frac{1}{2}\right)$ equals somewhat more than half the length of the hearl (much less than half in A. anoplus). The length of the last ray (.06) equals the distance from the snout to the orbit (.06).

The distance of the anal from the snont (.57) equals nearly 3 times the length of the longest dorsal ray. Its length of base (.31) is almost equal to that of the second dorsal. The first ray (.04) is half as long as the last (.08); the longest ($.14 \frac{1}{2}$) is contained nearly 4 times in the distance from the snout to the origin of the anal, and nearly 7 times in the total length.

The length of the middle candal rays (.25) equals $\frac{1}{4}$ of the total length. The length of the external rays $(.23)$ equals that of the rentral (.23).

The distance of the pectoral from the snout ($.35 \cdot \frac{1}{2}$) equals 5 times the length of the second dorsal spine. Its length (.30!2) equals 5 times that of the last dorsal ray. It extends to the fourth anal ray.

The distance of the ventral fiom the snont ($\because 24$) does not greatly exceed its length (.23), and is equal to the height of the body at the ventrals $(. \because 4)$. The rentral extends to about the origin of the spinous dorsal. The rent is under the anterior rays of the second dorsal.

Radial formula: B. VI; D. IV, 14; A. 13; P. 19-20; V. 6. L. lat. ca. So.

Color.-Astroscopus y-gracum has, on the upper parts, ummerons white spots, some of which are as long as the short diameter of the ere.

Note - In the tables of measurements the unit of length is the length of body to the origin of the middle citudal rays.

Table of Measurements.
Species, Astroscopus y-grcecum.

2. Astroscopus anoplus (C. \& V.) Breroort.

Cranoscopus anoplos Cuv. \& Val., Hist. Nat. Poiss., viii, 18.31, p. 493, (described from young specimens sent by Prof. LeConte): Dekay, Nat. Hist. N. Y., Fishes, 184?, p. 37, pl. xxii, fig. 65: Storer, Syin. Fishes N. A., 1845, p. 46 ("Sonth Carolina, LeConte"); Nem. Amer. Acad., ii, p. 298.

Astroscopus anoplus Gill ex Brevoort MSS., Proc. Aead. Nat. Sci. Phila., xii, Jan. 1860, p. 20; xiii, May, 1861, p. 114; Cat. Fishes E. Coast N. A., 1861, p. 43 ; Rep. U. S. Com. Fish., 1873, p. 798: Vartow, Proc. Acad. Nat. Sci. Phila., 18f7, p. 207: Jordan \& Gilbert, l'roc. L. S. Nat. Mus., i, 1879, 1. 3 3ヶ.

Agnus anoplus Günther，Cat．Fish．Brit．Mus．，ii，1860，p． 229.
Astroscopus guttatus Abrott，Proc．Acal．Nat．Sci．Phila．，xii，1860，p．365，pl． vii：Gill，Cat．Fish．E．Coast N．A．，Jan．1861，p． 43.
Upselouphorus guttatus Gill，Proc．Acad．Nat．Sci．Phila．，xiii，1861，p． 113.
The U．S．National Museum has specimens of A．anoplus from Tomp－ kinsville，N．Y．，Norfolk，Va．，and from an unknown locality．The list is as follows：

10761	Young	Tomplinsville，N．Y ．．	Charles Copley．
4622 a	Adult．	Norfolk，Va ．．．．．．．．．．	
4622 b	．．do．		
7304	（7 specs．）．．	United States？	

Description．－The shape of the body is similar to that of Trano－ scopus scaber．Its greatest height（．29），which is at the origin of the spinous dorsal，is contained 4 times in its length in the young and $3 \frac{1}{4}$ times in the adult．The greatest width of borly $\left(.24 \frac{1}{2}\right)$ is nearly $\frac{1}{4}$ of the length，and equals the length of the ventral（．242）．The height at the ventrals（ .27 ）equals three times the distance from the suout to the cen－ tre of the eye（．09）．The least height of the tail（．11）equals the width of the interorbital area（．11），and is contained 9 times in the total length．

The length of the head（．39）equals 3 times the length of the opercu－ lum（．13）．There are two postocular depressions，whose length（．072 $)$ equals their wirlth（．07⿺⿸⿻一丿又土2），or slightly less than twice the length of the snout（．04）．The greatest width of the head（．31）equals nearly 3 times the least height of the tail．The length of the upper jaw（．17）is con－ tained nearly 6 times，and of the mandible（．23） $4 \frac{1}{3}$ times in the total length．The long diameter of the eye（．031 $)$ equals $\frac{1}{4}$ the length of the longest anal ray（．14），and $\frac{1}{1 I}$ of the length of the head．

The distance of the spinons dorsal from the snont is about $\frac{3}{8}$ of the total length．The length of its base（．12）equals twice the length of its first spine（．06）．The spines are all shorter than in A．y－gracum．The second spine equals the first，and 3 times the last $\left(.0^{\circ}\right)$ ．The length of the base of the second dorsal（．30）equals 6 times the length of its last ray（．05）．The first ray equals the first spine in length．The longest ray（ $.16 \frac{1}{2}$ ）is contaned 6 times in the total length．

The distance of the anal from the snont（．60）equals twice the length of the second dorsal base（．30），and nearly twice the length of the anal base（．31）．The first anal ray（．04）equals the snout in length．The longest（．14）slightly exceeds in length the operculum，while the last （． $07 \frac{1}{3}$ ）about equals the length of the postocular depression．

The length of the middle caudal rays（． $23 \frac{1}{2}$ ）is usually a little less than that of the rentral（ $.2 \frac{1}{2}$ ）．

The distance of the pectoral from the snont（．36）equals 3 times the length of the base of the spinons dorsal．The length of the pectoral （．29）exceeds the length of the rentral（．241 $)$ by about $\frac{1}{6}$ of the length of the latter，and is contained nearly $3 \frac{1}{2}$ times in the total leugth．It ex－ tends to the 5th anal ray．

The distance of the rentral from the snont ($.25 \frac{1}{2}$) slightly exceeds its length. The rentral extends to a vertical through the anterior part of the first dorsal.

Radial formula: B. VI; D. IV-V, 13-14; A. 12-13; C. 16-18; V. 6. L. lat. ca. 113.

The lateral line begins about the middle of the opereulmm, ascends backward to near the upper ontline of the body, under the anterior half of the first dorsal, follows the upper outline close to the bases of the rays ás far as the end of the second dorsal, from which point it curres downward to the origin of the middle candal rays, and thence follows the origin of the bases of the lower candal rays.
Color.-Astroscopus anoplus is minutely spotted with white on the upper parts.

Note.-In the measurement tables the unit of comparison is the length to the origin of the middle caudal rays.

Table of Measurements.

Species, Astroscopus anoplus.

Current number of specimen. Locality \qquad	$\begin{gathered} 10,761 . \\ \text { Tompkinsville, } \\ \text { N. Y. } \end{gathered}$		$\begin{aligned} & \text { Guttatus," } \\ & \text { 4, 622 a. } \end{aligned}$		'Guttatus," $4,622 b$. Norfolk, Va.		Arer. ages.
	Millimetres.	$\begin{gathered} \text { looths } \\ \text { of } \\ \text { length. } \end{gathered}$	Millimetres.	$\begin{gathered} 100 \text { ths } \\ \text { of } \\ \text { length. } \end{gathered}$	Millimetres.	$\begin{aligned} & \text { 100ths } \\ & \text { of } \\ & \text { length. } \end{aligned}$	$\begin{aligned} & \text { 100ths } \\ & \text { of } \\ & \text { length. } \end{aligned}$
Extreme length	112		273		275		
Length to origin of middle candal rays..	91		221		220		
Bor Height at first dorsal.............		25		31		31	29
fireatest width		23		25		$25 \frac{1}{2}$	$24 \frac{1}{2}$
Height at ventrals		26		28		27	27
Least height of tail.		11		11		11	11
Leugth of caudal peduncle		7		11		11	
Head: Greatest lencth							
Leneth of oceipital depressio		38 7		39 8		39	39
Width of oceipital depression.		7		8			7 7
Greatest width		30		31		32	31
Width of interorbital area		10		11		1112	11
Length of snout		4		4		4	4
Length of operculum		13		13		13	13
Length of masillary.		17		17		$16 \frac{1}{3}$	17
Length of mandible		23		22		23	23
Distauce from suout to centre of orbit. .		9		9		9	9
Diameter of orbit		,		3		$3 \frac{1}{3}$	$3 \frac{1}{2}$
Dorsal (spinous): Distance from snont							
Distance from snont		38		36 12		38 12	37 12
Length of first spine		16		6		12	12
Length of second spin		6		6		*51	6
Leugth of last spine.		2		11		121	2
Dorsal (sott): Lencth of base							
Length of base		31 5		30 6		${ }_{60}^{30}$	30
Length of longest ray		17		16		$16 \frac{1}{2}$	16s
Length of last ray...		5		5		5	5
Anal: ${ }_{\text {Distance from snont }}$							
Distance from snont.		58		60		62	60 31
Length of first ray		4		4		5	4
Length of longest ray		14		13		14	14
Length of last ray.....		6		8		8	73
Candal: Length of middle rays.		23		23		$24 \frac{3}{3}$	$23 \frac{1}{2}$

Table of Mcasuroments-Continued.

Current number of specimen Locality \qquad $\{$	$\begin{gathered} 10,761 . \\ \text { Tompkinsville, } \\ \text { N. Y. } \end{gathered}$		$\begin{gathered} \text { "Guttatus," } \\ 4,622 a . \\ \text { Norfolk, Va. } \end{gathered}$		$\begin{gathered} \text { "Guttatus," } \\ \text { 4,62" b. } \\ \text { Norfolk, Va. } \end{gathered}$		$\begin{aligned} & \text { Arer- } \\ & \text { ages. } \end{aligned}$
	Millimetres.	$\begin{aligned} & 100 \text { ths } \\ & \text { of } \\ & \text { length. } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Milli- } \\ \text { metres. } \end{array}$	$\begin{aligned} & 100 \text { ths } \\ & \text { of } \\ & \text { length. } \end{aligned}$	Milli. metres.	$\begin{aligned} & \text { 100ths } \\ & \text { of } \\ & \text { length. } \end{aligned}$	$\begin{aligned} & \text { 100ths } \\ & \text { of } \\ & \text { length. } \end{aligned}$
Pectoral: Distanee from snout.		34		37		37	36
Length..............		29		28		29	29
Ventral:		24		27		$25 \frac{3}{2}$	$25 \frac{1}{2}$
Length..............		25		24		$24 \frac{1}{2}$	$24 \frac{1}{3}$
Branchiostegals	VI		VI		VI		
Dorsal	IV, 14		V, 13		V, 14	
Anal	12		13		13		
Candal	16-17		18		18		
Pectoral.	19		20		20 6		
Ventral	6		${ }_{113}^{6}+$		6		
Number of scales in lateral ine.			$113+$				

Wasmington, May 6, 1879.

ON THE OCTCHEENCE OF HIIPTOGLOSSES VILGAIRE, FEENIO, AT

By TAREETON M. BEAN.

No one has yet positively identified the halibut of the Pacific coast of North America with the Hippoglossus vulgaris of Fleming, so far as I can learn. Ayres, in 1854,* writing of the species observed in the market of San Francisco, says: "The great Hippoglossus vulgaris, universally known as the 'halibut,' the fishermen have assured me is sometimes caught near the Farallon Islands. Most of those sold in our market, however, if not all, are brought from the coast further north." In volume 2 of the same Proceedings ($1859, \mathrm{p} .30$), he writes: "Another species, in which the eyes are on the right side, is occasionally taken near the Farallon Islauds, opposite the mouth of the Bay, which I do not feel warranted in separating from $I_{\text {. }}$ vulgaris, without a direct comparison of the two. Its fin-rays are D. 102, A. 73, P. 16, V. 6, C. 4, 1, 7, 8, $1,4$.
"It appears to be seldom quite as large as H. califormicus."
The number of anal rays in this enumeration is smaller than usual, but not improbable.

Lord \dagger gives a graphic account of the Iudian mode of fishing for hatibut, and remarks as to the species: "I believe the species to be the Pleuronectes hippoglossus of Limmens, but of this I am by no means perfectly clear, as I had only an opportunity of examining this single specimen, that I estimated as weighing over 300 lbs ; and it was quite impossible to investigate its specific character," \&c.

[^2]
[^0]: * Cat. Fish. Brit. Mus. ii, 1860, p. 229.

[^1]: * Proc. Phila. Acad. Nitt. Sci., 1861, p. 113.
 + More marked in A. anoplus than in A. y-gracem.
 \ddagger These are present in Litanoscopus scaber and l. asper, and probably in all species of Uranoscopus. I am not aware that this has been previonsly mentioned.

[^2]: * Proc. Cal. Acad. Sci., i, 1855, 1st ed., p. 41, and $2 d$ ed., p. 40.
 † Naturalist in Vancouver Island and British Columbia, i, 186u, p. 149.

